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GALERKIN DISCRETIZATION OF MAXWELL AND
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Abstract. The role of involutions in energy stability of the discontinuous Galerkin (DG) dis-
cretization of Maxwell and magnetohydrodynamic (MHD) systems is examined. Important differ-
ences are identified in the symmetrization of the Maxwell and MHD systems that impact the construc-
tion of energy stable discretizations using the DG method. Specifically, general sufficient conditions
to be imposed on the DG numerical flux and approximation space are given so that energy stability is
retained. These sufficient conditions reveal the favorable energy consequence of imposing continuity
in the normal component of the magnetic induction field at interelement boundaries for MHD dis-
cretizations. Counterintuitively, this condition is not required for stability of Maxwell discretizations
using the discontinuous Galerkin method.
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1. Overview. Various mathematical models such the Maxwell equations
governing electrodynamics and the magnetohydrodynamic (MHD) equations
modeling fluid plasmas have the added complexity of possessing involutions. An
involution in the sense of conservation law systems is an additional equation that
if satisfied at some initial time is satisfied for all future time for both classical
and weak solutions [Boi88, Daf86]. Involutions should not be confused with con-
straints that are needed for closure of the system. An example of such a constraint
is the continuity equation in incompressible flow. In this note, the role of involu-
tions in obtaining energy stable discretizations using the discontinuous Galerkin
method [RH73, LR74, JP86, CLS89, CHS90] is briefly examined. Specifically,
the surprisingly different role played by involutions in the discontinuous Galerkin
(DG) discretization of Maxwell and ideal compressible MHD systems is con-
trasted. Although both systems possess solenoidal involutions, it is the interplay
between involutions and symmetrization of the Maxwell and MHD systems that
enters fundamentally into the construction of stable discretizations. In this regard,
the two systems are vastly different. The Maxwell equations are naturally ex-
pressed in essentially symmetric form. Consequently, the analysis given in Sects.
2.1 and 3.1 shows that “standard” DG discretizations can then be used. In contrast,
symmetrization of the MHD system utilizes the solenoidal involution as a nec-
essary ingredient in the symmetrization process. Details of this symmetrization
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process are given in Sect. 2.2. Thus, the precise sense in which involutions are sat-
isfied in element interiors and across interelement boundaries enters prominently
into the MHD discrete energy analysis. The analysis of Sect. 3.2 gives general
sufficient conditions to be imposed on the DG numerical flux and approximation
space in the presence of involutions so that energy stability is retained. These
sufficient conditions reveal the favorable consequences of imposing continuity in
the normal component of the magnetic induction field at interelement boundaries
for MHD discretizations. This is a condition that is not required for stability of
Maxwell discretizations using the discontinuous Galerkin method but is often a
requirement of other methods that build satisfaction of solenoidal conditions into
the discretization. Techniques for achieving this include staggered mesh and spe-
cialized differencing techniques [Yee66] as well as edge, face, and volume finite
element formulations [Ned80, Bos98, BR02] or the discrete mimetic approxima-
tions as given in [HS99]. The present analysis for MHD also provides alternatives
to the “divergence cleaning” procedures designed to exactly or approximately sat-
isfy the solenoidal condition, see [BB80, T0́0, DKK+02, BK04] and references
therein. Since the DG method reduces to the simplest finite volume method in
the special case of piecewise constant basis approximation, the results given here
impact finite volume discretization as well.

2. Symmetrization of Conservation Laws without Involution. Consider
the Cauchy initial value problem for a system ofm coupled first-order differential
equations in d space coordinates and time which represents a conservation law
process. Let u(x, t) : IRd × IR+ 7→ IRm denote the dependent solution variables
and f(u) : IRm 7→ IRm×d the flux vector. The model Cauchy problem is then
given by

{

u,t + fi,xi = 0
u(x, 0) = u0(x)(2.1)

with implied summation on the index i = 1, . . . , d. Additionally, the system is
assumed to possess a convex scalar entropy extension. Let U(u) : IRm 7→ IR and
F (u) : IRm 7→ IRd denote an entropy-entropy flux pair for the system such that
in addition to (2.1) the following inequality holds

U,t + Fi,xi ≤ 0(2.2)

with equality for classical (smooth) solutions. In the symmetrization theory for
first-order conservation laws without involution [God61, Moc80], one seeks a
mapping u(v) : IRm 7→ IRm applied to (2.1) so that when transformed

u,vv,t + fi,v v,xi = 0(2.3)

the matrix u,v is symmetric positive definite (SPD) and the matrices fi,v are
symmetric. Clearly, if twice differentiable functions U(v) : IRm 7→ IR and
Fi(v) : IRm 7→ IR can be found so that

u = UT,v, fi = FTi,v(2.4)
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then the matrices

u,v = U,vv, fi,v = Fi,vv

are symmetric. Further, we shall require that U(v) be a convex function such that

lim
v→∞

U(v)
|v|

= +∞(2.5)

so that U(u) can be interpreted as a Legendre transform of U(v)

U(u) = sup
v
{v · u− U(v)} .

From (2.5), it follows that ∃ v∗ ∈ IRm such that v ·u−U(v) achieves a maximum
at v∗

U(u) = v∗ · u− U(v∗) .(2.6)

At this maximum u = U,v(v∗) which can be locally inverted to the form v∗ =
v(u). Elimination of v∗ in (2.6) yields the simplified duality relationship

U(u) = v(u) · u− U(v(u)) .

Differentiation of this expression

UT,u = v + v,uu− v,u UT,v = v(2.7)

gives an explicit formula for the entropy variables v in terms of derivatives of the
entropy function U(u). Using the mapping relation v(u), a duality pairing for
entropy flux components is defined

Fi(u) = v(u) · fi(u)−Fi(v(u)) .

Differentiation then yields the flux relation

Fi,u = v · fi,u + v,ufi − v,uFTi,v = v · fi,u

and the fundamental relationship for classical solutions

v · (u,t + fi,xi) = U,t + Fi,xi = 0 .

These relationships are used extensively in the discrete energy analysis of the
discontinuous Galerkin method.

2.1. Maxwell Equations in Symmetric Form. The time-dependent
Maxwell equations are given by

∂

∂t

(

E
B

)

+∇×
(

−c2B
E

)

=
(

−j/ε0
0

)

(Maxwell equations)
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where E ∈ IRd, B ∈ IRd, ρc ∈ IR, and j ∈ IRd denote the electric field, magnetic
induction, charge and current density with ε0 and c the free-space permittivity and
speed of light, respectively. If the charge conservation equation

(ρc),t +∇ · j = 0(2.8)

is satisfied for all time then the Maxwell system possesses the following involu-
tions

∇ ·E = ρc/ε0
∇ ·B = 0 .

Writing the Maxwell system in matrix coefficient form reveals that the above
system is essentially already in symmetric form using the variables u ≡ (E,B)T

u,t +Ai u,xi = q(u) , Ai =
[

0 c2Mi

MT
i 0

]

where in three space dimensions

M1 =





0 0 0
0 0 1
0 −1 0



 , M2 =





0 0 −1
0 0 0
1 0 0



 , M3 =





0 1 0
−1 0 0
0 0 0





Consequently, a suitable entropy-entropy flux pair for the Maxwell system are
given by the scaled “square entropy” and square entropy flux

U(u) =
1
2

(|E|2 + c2 |B|2) , F (u) = c2 (E×B) .

Using this entropy function, the symmetrization variables and right symmetrizer
are then obtained

v = UT,u =
(

E
c2B

)

, u,v =
[

Id×d
c−2Id×d

]

thus rendering the coefficient matrices symmetric as expected

Aiu,v =
[

0 Mi

MT
i 0

]

.

Observe that the Maxwell system has been successfully symmetrized without uti-
lizing the involutions. Consequently, the energy analysis for Maxwell’s equations
in a vacuum domain is identical to the energy analysis for conservation law sys-
tems without involution as also observed in [CLS04].
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2.2. Ideal MHD in Symmetric Form. The equations of ideal compressible
MHD are given by

∂

∂t







ρ
ρV
E
B





+∇ ·









ρV
ρVV + Id×d

(

p+ |B|2/2
)

−B B
(

E + p+ |B|2/2
)

V − (V ·B) B
VB−BV









= 0 (Ideal MHD)

where ρ ∈ IR, V ∈ IRd, B ∈ IRd, and p ∈ IR denote the fluid density, velocity,

magnetic induction, and pressure with E ∈ IR the total specific energy given by

E =
p

γ − 1
+ ρ|V|2/2 + |B|2/2

and γ the ratio of specific heats. In addition, the MHD system possesses the
solenoidal involution

∇ ·B = 0

which is consistent with the absence of experimentally observed magnetic
monopoles.

It is well known that thermodynamic entropy s is transported along velocity
induced particle paths for ideal MHD. Recall that s = log(pρ−γ) for MHD so
that a differential of s is given by

d s = −γ
ρ
d ρ+

1
p
d p .

Inserting equations derived from the MHD system (2.2) yields

s,t + V · ∇s+ (γ − 1)
V ·B
p
∇ ·B = 0

or after combining with the continuity equation

(ρs),t + div(ρVs) + (γ − 1)
ρV ·B
p
∇ ·B = 0

suggesting that U(u) = −ρs may be a suitable entropy function only if the in-
volution ∇ · B = 0 is satisfied. Indeed, a straightforward calculation for ideal
MHD shows that this entropy function does not symmetrize the system under the
change of variable u 7→ v with v = UT,u (see for example Barth [Bar98])

f,v 6= fT,v

since the involution equation has not been used. Godunov [God72] observed this
phenomenon as well which lead to his development of a symmetrization tech-
nique for ideal MHD. The basic technique is reviewed here using a modified pre-
sentation from that originally given. The model MHD system with solenoidal
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involution is given by






u,t + fi,xi = 0
Bi,xi = 0

u(x, 0) = u0(x)
(2.9)

with convex entropy extension

U,t + Fi,xi ≤ 0 .(2.10)

To analyze this system, Godunov considered augmenting the MHD system by
adding multiples of the involution where the multipliers are themselves the gra-
dient of a scalar homogeneous of degree one function φ(v) : IRm 7→ IR with
respect to the symmetrization variables v

u,t + fi,xi + φT,v Bi,xi = 0 .

Consider the following ansatz for the dependent variables u and flux components
fi

u = UT,v
fi = FTi,v − r(v) Bi

with U a convex scalar function and r(v) : IRm 7→ IRm an unknown vector-
valued function. Observe that the augmented MHD system

(U,v),t + (Fi,v − r(v) Bi)T,xi + φT,v Bi,xi = 0(2.11)

possesses a symmetric quasilinear form in v variables whenever r(v) = φT,v since
the system (2.11) then reduces to

U,vv
︸︷︷︸

SPD

v,t + (Fi,vv − φ,vvBi)
︸ ︷︷ ︸

SYMM

v,xi = 0

so that the final flux relationship is obtained

fi = FTi,v − φT,v Bi .

The entropy function U(u) for MHD can be interpreted as a Legendre transform
of U(v)

U(u) = sup
v
{v · u− U(v)}

eventually producing the generalized duality relationships

U(u) = v(u) · U,v(v(u))− U(v(u))
Fi(u) = v(u) · Fi,v(v(u))−Fi(v(u))(2.12)
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so that for classical MHD solutions

v · (u,t + fi,xi + φT,v Bi,xi) = U,t + Fi,xi = 0 .

This relationship will be used heavily in later analysis of the discontinuous
Galerkin method.

Choosing the entropy functionU(u) = −ρs yields φ(v) = (γ−1) ρV·B/p,
a homogeneous function of degree one in v (as required) so that 0 = v · φ,vv.
The resulting involution multipliers φ,v are identical to those derived by Powell
[Pow94] using a completely different argument motivated by (in part) the lack
of Galilean invariance of the original MHD system and the subsequent addition
of a divergence wave family into the local Riemann problem solution to restore
Galilean invariance.

REMARK 2.1. Observe that MHD provides one particular example of a
symmetrizable system with a given entropy-entropy flux pair {U,Fi} for which
the flux is not expressed as the gradient of a primative function Fi but rather

fi = FTi,v − φT,v Bi .

In fact, for the specific MHD entropy function U(u) = −ρs, it is possible to show
that there cannot exist a function ˜Fi such that

fi = ˜FTi,v .

Thus, the DG energy analysis of MHD systems is fundamentally different from the
energy analysis of systems not possessing involutions.

3. The DG Finite Element Method. Let Ω denote a spatial domain com-
posed of stationary nonoverlapping elements Ki, Ω = ∪Ki, Ki ∩Kj = ∅, i 6= j
and time slab intervals In ≡ [tn+, t

n+1
− ], n = 0, . . . , N − 1. Both continuous in

time approximation and full space-time approximation on tensor space-time ele-
ments Ki × In will be considered in the analysis. It is useful to also define the
element set T = {K1,K2, . . .} and the interface set E = {e1, e2, . . .} with inter-
face members Ki ∩ Kj , i 6= j of measure d − 1 corresponding to edges in 2-D
and faces in 3-D. Let Pk(Q) denote the set of polynomials of degree at most k
in a domain Q ⊂ IRd. In the discontinuous Galerkin method, the approximating
functions are discontinuous polynomials in both space and time

Vh =
{

w |w|K×In ∈
(

Pk(K × In)
)m

,∀K ∈ T , n = 0, . . . , N − 1
}

.

Alternatively, [CLS89, CHS90, Shu99] utilize a semi-discrete formulation of the
DG method together with Runge-Kutta time integration. In this case, the set of
approximating functions are discontinuous polynomials in space and continuous
functions in time denoted by Vhc .

For ease of exposition, the spatial domain Ω is assumed either periodic in all
space dimensions or nonperiodic with compactly supported initial data. In this
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domain, we first consider the standard first-order Cauchy initial value problem
(without involution)

{

u,t + fi,xi = 0
u(x, t0−) = u0(x)(3.1)

with convex entropy extension

U,t + Fi,xi ≤ 0 .(3.2)

The DG method for the time interval [t0+, t
N
− ] with weakly imposed initial data

vh(x, t0−) obtained from a suitable projection of the initial data v(u0(x)) is given
by the following statement:

DG FEM: Find vh ∈ Vh such that

BDG(vh,wh) = 0 , ∀wh ∈ Vh(3.3)

with

BDG(v,w) =
N−1
∑

n=0

(

∑

K∈T

∫

In

∫

K

−(u(v) ·w,t + fi(v) ·w,xi) dx dt

+
∑

K∈T

∫

In

∫

∂K

w(x−) · h(v(x−),v(x+); n) ds dt

+
∑

K∈T

∫

K

(

w(tn+1
− ) · u(v(tn+1

− ))−w(tn+) · u(v(tn−))
)

dx

)

(3.4)

with suitable modifications when source terms are present. In this statement
h(v−,v+; n) : IRm × IRm × IRd 7→ IRm denotes a numerical flux function,
a vector-valued function of two interface states v± and an oriented interface nor-
mal n with the following consistency and conservation properties:

• Consistency with the true flux, h(v,v; n) = f(v) · n
• Discrete cell conservation, h(v−,v+; n) = −h(v+,v−;−n) .

For a given symmetrizable system with entropy function U(u), the DG method
is uniquely specified once Vh, the entropy function U(u), and the numerical flux
function h(v−,v+; n) are chosen. In this formulation, the finite-dimensional
space of symmetrization variables vh are the basic unknowns in the trial space
Vh and the dependent variables are then derived via u(vh). When not needed for
clarity, this mapping is sometimes explicitly omitted, e.g. U(vh) is written rather
than U(u(vh)). An important product of the DG energy analysis given below are
sufficient conditions to be imposed on the numerical flux so that discrete entropy
inequalities and total entropy bounds of the following form are obtained for the
discretization of the Cauchy initial value problem (no boundary conditions):

• A local cell entropy inequality assuming continuous in time approxima-
tion, vh ∈ Vhc
d

dt

∫

K

U(vh) dx+
∫

∂K

F (v−,h,v+,h; n) ds ≤ 0 , for each K ∈ T
(3.5)
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where F (v−,h,v+,h; n) denotes a conservative numerical entropy flux.
Summing over all elements then yields the global inequality

d

dt

∫

Ω

U(vh) dx ≤ 0 .(3.6)

• A total entropy bound assuming full space-time approximation, vh ∈ Vh
∫

Ω

U(u∗(t0−)) dx ≤
∫

Ω

U(u(vh(x, tN− ))) dx ≤
∫

Ω

U(u(vh(x, t0−)) dx

(3.7)
where u∗(t0−) denotes the minimum total entropy state of the projected
initial data

u∗(t0−) ≡ 1
meas(Ω)

∫

Ω

u(vh(x, t0−)) dx .

Under the assumption that the symmetrizer u,v remains spectrally
bounded in space-time, i.e. there exist positive constants c0 and C0 in-
dependent of vh such that

0 < c0 ‖z‖2 ≤ z · u,v(vh(x, t)) z ≤ C0 ‖z‖2

for all z 6= 0, the following L2 stability result is then readily obtained
for the Cauchy problem

‖u(vh(·, tN− ))−u∗(t0−)‖L2(Ω) ≤
(

C0

c0

)1/2

‖u(vh(·, t0−))−u∗(t0−)‖L2(Ω)

3.1. DG Energy Analysis for Systems without Involution. In this section,
the DG energy analysis for systems of conservation laws without involution is
reviewed. From Sect. 2.1 it was shown that this analysis is also the relevant
analysis for the Maxwell system since this system can be symmetrized without
using the Maxwell system involutions. Consequently, consider the DG method
applied to the nonlinear system (3.1). For brevity, we avoid the introduction
of trace operators and instead use the shorthand notation for interface quanti-
ties f± ≡ f(v(x±)), 〈f〉+− ≡ (f− + f+)/2 and [f ]+− = f+ − f−. An energy
analysis assuming continuous in time functions, vh ∈ Vhc , yields the following
cell-wise local entropy inequality which build upon previous scalar conservation
law analysis for DG by [JJS95, JS94] and further related DG analysis for systems
in [CS97] and [Bar98, Bar99].

THEOREM 3.1 (DG Semi-Discrete Cell Entropy Inequality). Let vh ∈ Vhc
denote a numerical solution obtained using the discontinuous Galerkin method
(3.4) assuming a continuous in time approximation for the Cauchy initial value
problem (3.1) with convex entropy extension (3.2). Assume the numerical flux
h(v−,v+; n) satisfies the system E-flux condition

[v]+− · (h(v−,v+; n)− f(v(θ)) · n) ≤ 0 , ∀θ ∈ [0, 1](3.8)
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where v(θ) = v− + θ [v]+−. The numerical solution vh then satisfies the local
semi-discrete cell entropy inequality

d

dt

∫

K

U(vh) dx+
∫

∂K

F (v−,h,v+,h; n) ds ≤ 0 , for each K ∈ T(3.9)

with

F (v−,v+; n) ≡ 〈v〉+− · h(v−,v+; n)− 〈F · n〉+−(3.10)

as well as the global semi-discrete entropy inequality

d

dt

∫

Ω

U(vh) dx ≤ 0 .(3.11)

Proof. Evaluate the energy, BDG(vh,vh), for a single stationary element K
assuming continuous in time functions

∫

K

v · u,t dx =
d

dt

∫

K

U dx

= −
(∫

K

−v,xi · fi dx+
∫

∂K

v− · h ds
)

= −
(∫

K

−Fi,xi dx+
∫

∂K

v− · h ds
)

= −
∫

∂K

(−F− · n + v− · h) ds

= −
∫

∂K

( F (v−,v+; n)
︸ ︷︷ ︸

Conservative Flux

+ D(v−,v+; n)
︸ ︷︷ ︸

Entropy Dissipation

) ds

for carefully chosen conservative entropy flux and entropy dissipation functions

F (v−,v+; n) ≡ 〈v〉+− · h(v−,v+; n)− 〈F · n〉+−
D(v−,v+; n) ≡ −1

2
([v]+− · h(v−,v+; n)− [F · n]+−) .

Observe that the chosen form of F (v−,v+; n) is a consistent and conservative
approximation to the true entropy flux F (v)

• F (v,v; n) = (v · f −F) · n = F · n (consistency)
• F (v−,v+; n) = −F (v+,v−;−n) (conservation) .

The only remaining task is to determine sufficient conditions in the design of the
numerical flux h(v−,v+; n) so thatD(v−,v+; n) ≥ 0. Rewriting the jump term
appearing in the entropy dissipation term as a path integration in state space

D(v−,v+; n) = −1
2

([v]+− · h(v−,v+; n)− [F · n]+−)
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= −1
2

[v]+− ·
(

h(v−,v+; n)−
∫ 1

0

FT,v(v(θ)) · n dθ
)

= −1
2

[v]+− ·
(

h(v−,v+; n)−
∫ 1

0

f(v(θ)) · n dθ
)

= −1
2

∫ 1

0

[v]+− · (h(v−,v+; n)− f(v(θ)) · n) dθ .

A sufficient condition for nonnegativity of D(v−,v+; n) and the local cell en-
tropy inequality (3.9) when applied to finite-dimensional subspaces is that the
integrand be nonpositive. This yields a system generalization of Osher’s famous
E-flux condition for scalar conservation laws given in [Osh84]

[v]+− · (h(v−,v+; n)− f(v(θ)) · n) ≤ 0 , ∀θ ∈ [0, 1] .(3.12)

Summation of (3.9) over all elements in the mesh together with the conservative
telescoping property of F (v−,v+; n) yields the global entropy inequality (3.11).

Let λ1 ≤ λ2 ≤ · · · ≤ λm denote ordered eigenvalues of f,u. Some specific
examples of system E-fluxes (proofs omitted here) include

• Symmetric variable variant of the local Lax-Friedrichs flux

hSLF(v−,v+; n) = 〈f · n〉+− −
1
2
λmax [u(v)]x+

x−
(3.13)

with

λmax ≡ sup
0≤ξ≤1

max
1≤i≤m

|λi(v(ξ))|

where v(ξ) = v− + ξ [v]+−.
• Symmetric variable variant of the Harten-Lax-van Leer-Einfeldt flux

[HLvL83, EMRS92]

hSHLLE(v−,v+; n) = 〈f · n〉+− −
1
2

hdSHLLE(v−,v+; n)(3.14)

with

hdSHLLE(v−,v+; n) =
λmax + λmin

λmax − λmin
[f(v; n)]+−−

2λmaxλmin

λmax − λmin
[u(v)]+−

and

λmax ≡ sup
0≤ξ≤1

max(0, λm(v(ξ))) , λmin ≡ inf
0≤ξ≤1

min(0, λ1(v(ξ)))

where v(ξ) = v− + ξ [v]+−.
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Fully discrete entropy bounds are readily derived assuming DG finite element
discretization in time.

THEOREM 3.2 (DG Fully-discrete Total Entropy Bounds). Let vh ∈
Vh denote the space-time numerical solution obtained using the discontinuous
Galerkin method (3.4) for the Cauchy initial value problem (3.1) with convex en-
tropy extension (3.2). Assume the numerical flux h(v−,v+; n) satisfies the system
E-flux condition

[v]+− · (h(v−,v+; n)− f(v(θ)) · n) ≤ 0 , ∀θ ∈ [0, 1]

where v(θ) = v− + θ [v]+−. The numerical solution vh then satisfies the total
entropy bound

∫

Ω

U(u∗(t0−)) dx ≤
∫

Ω

U(u(vh(x, tN− ))) dx ≤
∫

Ω

U(u(vh(x, t0−)) dx(3.15)

where u∗(t0−) denotes the minimum total entropy state of the initial projected data

u∗(t0−) ≡ 1
meas(Ω)

∫

Ω

u(vh(x, t0−)) dx .

Proof. Analysis of the spatial terms follows the same path taken in Theorem
3.1 (omitted here) with an additional integration performed in the time coordi-
nate. Consider the energy of the remaining time evolution terms in (3.4) after
integration-by-parts for a single time slab interval In
∫

In

∫

Ω

v · u,t dx dt+
∫

Ω

v(tn+) · [u]
tn+
tn−
dx=

∫

Ω

∫

In
U,t dt dx+

∫

Ω

v(tn+) · [u]
tn+
tn−
dx

=
∫

Ω

(

[U ]
tn+1
−
tn−
− [U ]

tn+
tn−

+ v(tn+) · [u]
tn+
tn−

)

dx

Taylor series with integral remainder together with the duality relationship (2)
yields

[U ]
tn+
tn−
−v(tn−) · [u]

tn+
tn−

+Rn = 0 , Rn ≡
∫ 1

0

(1−θ) [v]
tn+
tn−
·u,v(v(θ)) [v]

tn+
tn−
dθ ≥ 0

where v(θ) = v(tn−) + θ [v]
tn+
tn−

. Inserting into the time evolution terms
∫

In

∫

Ω

v · u,t dx dt+
∫

Ω

v(tn+) · [u]
tn+
tn−
dx =

∫

Ω

(

[U ]
tn+1
−
tn−

+Rn
)

dx .

Summing over all time slabs, the first term on the right-hand side of this equation
vanishes except for initial and final time slab contributions. Utilizing nonnega-
tivity of the remainder terms Rn then yields the following inequality for the time
evolution terms
N−1
∑

n=0

(∫

In

∫

Ω

v · u,t dx dt+
∫

Ω

v(tn+) · [u]
tn+
tn−
dx

)

≥
∫

Ω

(

U(tN− )− U(t0−)
)

dx .



THE ROLE OF INVOLUTIONS IN DISCONTINUOUS GALERKIN DISCRETIZATION 13

Assume satisfaction of the system E-flux condition, the spatial term analysis used
in the proof of Theorem 3.1 reduces to the inequality

N−1
∑

n=0

∑

K∈T

∫

In

(∫

K

−v,xi · fi dx+
∫

∂K

v− · h ds
)

dt ≥ 0 .

Combining temporal and spatial results yields

0 = BDG(v,v) ≥
∫

Ω

(

U(tN− )− U(t0−)
)

dx .

Hence, the desired upper bound in (3.15) is established when applied to finite-
dimensional subspaces

∫

Ω

U(u(vh(x, tN− ))) dx ≤
∫

Ω

U(u(vh(x, t0−)) dx .(3.16)

To obtain the lower bound in (3.15), we exploit the well-known thermodynamic
concept of a minimum total entropy state (see for example [Mer88]). Define the
integral average state u∗ at time slab boundaries

u∗(tn−) ≡ 1
meas(Ω)

∫

Ω

u(vh(x, tn−)) dx , n = 0, . . . , N .

For the DG space-time discretization of the Cauchy initial value problem, u∗ is
invariant when evaluated at time slab boundaries, i.e.

u∗(tn−) = u∗(tn−1
− ) = . . . = u∗(t0−)(3.17)

owing to discrete conservation in both space and time. A Taylor series with in-
tegral remainder expansion of the entropy function given two states u∗(tn−) and
u(vh(x, tn−)) for a fixed n yields

U(u) = U(u∗) +v(u∗) · (u−u∗) +
∫ 1

0

(1− θ))(u−u∗) ·U,uu(θ)(u−u∗) dθ .

When integrated over Ω, the second right-hand side term vanishes identically by
the definition of u∗

∫

Ω

U(u) dx =
∫

Ω

U(u∗) dx+
∫

Ω

∫ 1

0

(1−θ))(u−u∗) ·U,uu(θ)(u−u∗) dθ dx .

From strict convexity of the entropy function, it follows that u∗ is a minimum total
entropy state since

∫

Ω
U dx is minimized when u = u∗. Finally, since u∗(tn−) is

constant for n = 0, . . . , N , then
∫

Ω

U(u∗(t0−)) dx =
∫

Ω

U(u∗(tN− )) dx ≤
∫

Ω

U(u(vh(x, tN− ))) dx .

This establishes the lower bound in (3.15).
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3.2. DG Stability Analysis for Systems with Solenoidal Involution. Our
attention shifts to the MHD system with solenoidal involution







u,t + fi,xi = 0
Bi,xi = 0

u(x, t0−) = u0(x)
(3.18)

with convex entropy extension

U,t + Fi,xi ≤ 0 .(3.19)

The goal is to derive sufficient conditions for MHD system discretizations so that
the cell entropy inequality (3.5), the global semi-discrete bound (3.6), and the
global space-time bound (3.7) are obtained. Motivated by the Godunov MHD
symmetrization theory, we consider an implementation of the DG method using
the Godunov augmented MHD system.

DG FEM for MHD: Find vh ∈ Vh such that

BDG−MHD(vh,wh) = 0 , ∀wh ∈ Vh(3.20)

with

BDG−MHD(v,w) =
N−1
∑

n=0

(

∑

K∈T

∫

In

∫

K

−(u(v) ·w,t + fi(v) ·w,xi) dx dt

−
∑

K∈T

∫

In

∫

K

σK (w · φT,v)∇ ·B(v) dx dt

+
∑

K∈T

∫

In

∫

∂K

w(x−) · h(v(x−),v(x+); n) ds dt

+
∑

K∈T

∫

K

(

w(tn+1
− ) · u(v(tn+1

− ))−w(tn+) · u(v(tn−))
)

dx

)

.(3.21)

Observe the added ∇ ·B term with adjustable coefficient σK is motivated by the
theory given in Sect. 2.2. The value of σK will be determined from the discrete
energy analysis. This term is identical to that proposed by Powell [Pow94] using a
different motivating argument. Unfortunately, without placing further constraints
on the discrete B field, the Powell term is only valid for classical (smooth) solu-
tions since this term cannot be written in divergence form. Consequently incorrect
Rankine-Hugonoit jump conditions are observed for computed weak (discontinu-
ous) solutions [Csi02]. Note that this term vanishes identically and correct weak
solutions are obtained when a locally divergence-free basis is employed.

A DG analysis similar to that used in Theorem 3.1 yields the following con-
ditions for a discrete cell entropy inequality for the MHD formulation.

THEOREM 3.3 (DG Semi-Discrete MHD Cell Entropy Inequality). Let
vh ∈ Vhc denote a numerical solution obtained using the discontinuous Galerkin
method (3.21) assuming continuous in time approximation for the MHD Cauchy
initial value problem (3.18) with convex entropy extension (3.19). Assume the
following conditions are satisfied:
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1. Either σK = 1 or the pointwise solenoidal condition

∇ ·B(vh)|K = 0 , ∀K ∈ T .

2. The MHD system E-flux condition

[v]+− · (h(v−,v+; n)− f(v(θ)) · n + φ(v(θ)) (B(v(θ)) · n)T,v) ≤ 0 ,

∀θ ∈ [0, 1] where v(θ) = v− + θ [v]+−.
The numerical solution vh then satisfies the local semi-discrete cell entropy in-
equality

d

dt

∫

K

U(vh) dx+
∫

∂K

F (v−,h,v+,h; n) ds ≤ 0 , for each K ∈ T(3.22)

with

F (v−,v+; n) ≡ 〈v〉+− · h(v−,v+; n)− 〈F · n− φ B · n〉+−(3.23)

as well as the global semi-discrete entropy inequality

d

dt

∫

Ω

U(vh) dx ≤ 0 .(3.24)

Proof. Evaluate the energy, BDG(vh,vh), for a single stationary element
K in the DG discretization of the MHD system assuming continuous in time
approximation

d

dt

∫

K

U dx = −
∫

K

(−v,xi · fi) dx+
∫

∂K

v− · h ds

= −
∫

∂K

(−F− · n + φ− (B− · n) + v− · h) ds

−
∫

K

(1− σK)φ∇ ·B dx

= −
∫

∂K

(F (v−,v+; n) +D(v−,v+; n)) ds

−
∫

K

(1− σK)φ∇ ·B dx .

The remaining element interior term vanishes identically by either imposing
σK = 1 or the local solenoidal condition on the magnetic induction field,
∇ · B|K = 0. Suitable definitions for the conservative entropy flux and entropy
dissipation are given by

F (v−,v+; n) ≡ 〈v〉+− · h(v−,v+; n) + 〈−F · n + φ B · n〉+−
D(v−,v+; n) ≡ −1

2
([v]+− · h + [−F · n + φ B · n]+−) .

This choice of numerical entropy flux satisfies conservation and consistency prop-
erties
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• F (v−,v+; n) = −F (v+,v−;−n) (conservation)
• F (v,v; n) = (v · f −F + φ B) · n = F · n (consistency) .

Rewriting the jump term appearing in the entropy dissipation term as a path inte-
gration assuming a parameterized state space v(θ) = v− + θ [v]+−

D(v−,v+; n) = −1
2

([v]+− · h + [−F · n + φ B · n]+−)

= −1
2

[v]+− ·
(

h−
∫ 1

0

(

FT,v(v(θ)) · n− (φ B · n)T,v(v(θ))
)

dθ

)

= −1
2

∫ 1

0

[v]+− ·
(

h− f(v(θ)) · n + φ(v(θ)) (B(v(θ)) · n)T,v
)

dθ .

A sufficient condition for nonnegativity of D(v−,v+; n) is that the integrand be
nonpositive. This yields the MHD E-flux condition

[v]+− ·(h(v−,v+; n)−f(v(θ))·n+φ(v(θ)) (B(v(θ))·n)T,v) ≤ 0 , ∀θ ∈ [0, 1] .

This establishes the semi-discrete cell entropy inequality for MHD. Summation
of (3.22) over all elements in the mesh together with the conservative telescop-
ing property of F (v−,v+; n) yields the global semi-discrete entropy inequality
(3.24).

The conditions set forth in Theorem 3.3 are also sufficient to establish two-sided
bounds on the total entropy.

THEOREM 3.4 (DG Fully-discrete MHD Total Entropy Bounds). Let
vh ∈ Vh denote the space-time numerical solution obtained using the discontin-
uous Galerkin method (3.21) for the MHD Cauchy initial value problem (3.18)
with convex entropy extension (3.19). Assume the following conditions are satis-
fied:

1. Either σK = 1 and the cellwise condition
∫

K

φT,v∇ ·B(vh) dx = 0 , ∀K ∈ T

or σK 6= 1 and the pointwise condition

∇ ·B(vh)|K = 0, ∀K ∈ T .

2. The MHD system E-flux condition

[v]+− · (h(v−,v+; n)− f(v(θ)) · n + φ(v(θ)) (B(v(θ)) · n)T,v) ≤ 0 ,

∀θ ∈ [0, 1] where v(θ) = v− + θ [v]+−.
The numerical solution vh then satisfies the total entropy bound

∫

Ω

U(u∗(t0−)) dx ≤
∫

Ω

U(u(vh(x, tN− ))) dx ≤
∫

Ω

U(u(vh(x, t0−)) dx(3.25)
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where u∗(t0−) denotes the minimum total entropy state of the initial projected data

u∗(t0−) ≡ 1
meas(Ω)

∫

Ω

u(vh(x, t0−)) dx .

Proof. Omitted, see Theorem 3.2. The cellwise condition arises from the
establishment of the minimum entropy state, u∗.

3.2.1. A Compatible B Field Representation. Unfortunately, conventional
system E-fluxes do not satisfy the MHD system E-flux condition. Furthermore,
calculation of the actual symmetrization variables for the MHD system (2.2) as-
sociated with the entropy function, U(u) = −ρ s, reveals that B is not a vector
component of v, viz.

v = UTu = (γ − 1)











γ−s
γ−1 + ρV2

2p
ρV
p

−ρp
ρB
p











(3.26)

Observe, however, that the last vector component ρB/p is a −B multiple of the
preceding component −ρ/p. Hence, it is possible to parameterize v on a line,
v(θ) = v− + θ [v]+−, and constrain B · n independent of θ so that [B · n]+− = 0.
The following lemma states that under this constraint, the MHD system E-flux
condition reduces to a constrained variant of the system E-flux condition (3.8).

LEMMA 3.1 (B Field Compatibility). Assume the MHD system E-flux con-
dition as given in Theorems 3.3 and 3.4. In addition, assume that B(v) · n is
constrained to be continuous at interelement interfaces, i.e. [B(v) · n]+− = 0.
Then, under this assumption, the results of Theorems 3.3 and 3.4 are identically
obtained with the MHD system E-flux condition

[v]+− · (h− f(v(θ)) · n + φ(v(θ))(B(v(θ)) · n)T,v) ≤ 0 , ∀ θ ∈ [0, 1]

replaced by the constrained system E-flux condition

[v]+− · (h− f(v(θ)) · n)|B·n const ≤ 0 , ∀ θ ∈ [0, 1] .

Proof. The result follows immediately since

[v]+− · (B(v(θ)) · n)T,v =
dB(v(θ)) · n

dθ
= 0(3.27)

due to the θ independence of B · n at element interfaces.
This result indicates the underlying intrinsic compatibility requirement of

continuity in the normal component of the magnetic induction field for DG dis-
cretizations of MHD. Precise implementational details are given in a separate
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work [Bar04]. In that same work, several other DG discretization formulations
and simplified flux functions are given which satisfy the sufficient conditions
given in Theorems 3.3 and 3.4

• Transformed variable formulations
• Constrained formulations
• Penalty formulations

4. Conclusions. The energy analysis presented herein reveals the subtle in-
terplay of involutions in the nonlinear stability of the DG method. Sufficient con-
ditions for energy stability of DG discretizations of Maxwell and MHD systems
have been obtained. From the viewpoint of discrete energy stability, analysis in-
dicates that “standard” DG discretization Maxwell’s equations are energy stable
without modification. Surprisingly, sufficient conditions for MHD discretization
stability place more demanding requirements as set forth in Theorems 3.3 and 3.4.
More complete details and DG formulations for MHD can be found in [Bar04].
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